Courses


Bayesian environmental statistics

Developed as a special topics course in the Department of Earth System Science at UCI. The course taught the basics of Bayesian statistics using the Stan programming language. Participants brought their own datasets to analyze in the course and also contributed to a group data analysis project that resulted in a peer reviewed publication.


Workshops


Bayesian modeling of ecological systems using the 'Stan' software package
Developed with Paul Mattern as part of the Independent Activities Period at MIT. The course develops a Bayesian analysis of a marine ecosystem model via simulation, model fitting, prior specification, predictive analyses, and uncertainty quantification. The model analysis is done in Python. Fitting the model is done in the Stan programming language.

Materials available here

Bayesian Modelling of Dynamic Marine Systems
Developed with Paul Mattern as part of the Collaboration on Computational Biogeochemical Modelling of Marine Ecosystems (CBIOMES). The workshop materials apply the MCMC package Stan to a series of case studies. All codes to call Stan are written in Julia, R, and Python, inclusively. Lecture materials include a brief introduction to Bayesian inference and the science behind the case studies.

Materials available here

Introduction to Spatial-Temporal Statistics
Developed with Yara Mohajerani as part of the Data Science Initiative at UCI. Topics cover introductory concepts in applied time series and spatial analysis using a few key R packages. The notes also include instructions linking Python to R via the package rPy2, allowing Python users to access the many statistics packages in R.

Materials available here